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Abstract. On the basis of the nondegenerate Λ quantum-beat laser model, we introduce a coherent field
which drives the transition between the upper lasing level and an auxiliary level. We demonstrate that such
a four-level system can produce squeezed two-mode laser without and with inversion. When the laser is
operated well above threshold, the intensity fluctuation in the average mode is reduced below the shot noise
with an optimum Mandel parameter Q = −1/2. At the same time, the noises in the relative amplitude and
the relative phase drop to their vaccum noise levels. Furthermore, regardless of inversion, noninversion,
and transition between inversion and noninversion, the optimum Mandel Q parameter of Q = −1/2 is
retained when the system operates well above threshold. A simple physical explanation of the squeezing
mechanism for two-mode squeezing is given.

PACS. 42.50.Lc Quantum fluctuations, quantum noise, and quantum jumps – 42.50.Ar Photon statistics
and coherence theory – 42.50.Dv Nonclassical field states; squeezed, antibunched, and sub-Poissonian
states; operational definitions of the phase of the field; phase measurements

1 Introduction

Recently considerable effort has gone to the study of lasing
without inversion. Many models have been proposed, and
the conditions for the onset of lasing action have been
examined [1–10]. Experimentally lasing without popula-
tion inversion has been observed [11–17]. Atomic coher-
ence associated with the light amplification may lead to
unusual statistical properties in inversionless lasers. Agar-
wal [18] showed that lasers without inversion may have a
narrower linewidth than that of conventional lasers. Gheri
and Walls [19] and Manka, Keitel, et al. [20] found that
squeezed light can be produced in an inversionless closed
Λ system and in an open Λ system, respectively. The max-
imum squeezing is up to 50% below the shot noise limit.
Amplitude squeezing which is more than 50% below the
shot noise limit has also been found in a cyclic Λ-type Ra-
man laser by Ritsch and Marte, and Zoller [21], and in a
four level V -type cyclic laser by Zhu, Rubiera, and Xiao
[22]. In these systems, the enhancement of squeezing is
due to additional dynamical pumping [23]. Including the
effects of the detunings of laser transition and pump tran-
sition [24] or utilizing the initial atomic coherence [25] one
can enhance squeezing with a Mandel Q parameter close
to −1.

The studies on the statistical properties of lasers with-
out inversion mainly focus on the single-mode system. In
this paper we show that squeezed two-mode laser can be
produced from a closed four-level system (as shown in
Fig. 1a). The optimum Mandel Q parameters ofQ = −1/2
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Fig. 1. (a) Schematic representation of the four-level atom.
(b) Atomic levels and transitions in the picture dressed by the
microwave field.

are found when the laser is operated well above thresh-
old. On the other hand, because of absence of positive
inversion, it seems that a laser without inversion produces
squeezing more effectively than a laser with inversion does.
In this paper we also show that lasers with and without in-
version produce squeezed light as effectively as each other.

In some recent papers there are some passive schemes
which have been proposed to produce squeezed two-mode
light, such as, multiwave mixing [26] and interaction of
two-mode field with a cascade three-level atom [27]. Al-
though good squeezing in one phase quadrature can be
obtained, the squeezed light is very weak. The two-mode
amplitude is much smaller than the spontaneous emission
rates. As an active device of reducing noise, correlated
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spontaneous emission laser (CEL) has received consider-
able attention [28–34]. The CEL can be established by
microwave coupling, initial atomic coherence, etc. Scully
[28] first showed that, in V CEL, it is possible to elimi-
nate the spontaneous emission fluctuations in the relative
phase of the two laser modes. The prediction was verified
by Winters, Hall and Toschek [31]. Two-mode two-photon
CEL was found to produce two-mode squeezing [32]. The
average phase and the relative amplitude exhibit 50% in-
tracavity squeezing. However, only in the two-photon limit
(i.e., three-level two-mode two-photon CEL reduces to the
effective two-level two-mode two-photon CEL [33]), is the
squeezing significant. Here we show that the four-level sys-
tem can produce bright squeezed laser light. The noise
in the average amplitude is reduced 50% below the shot
noise, and at the same time the noises in the relative am-
plitude and in the relative phase are reduced to vaccum
noise levels.

The work is organized as follows. In Section 2 we
present our model and derive the Langevin equations
of the system. The quantum noises are calculated in
Section 3. The main results are given in Section 4, respec-
tively. A physical mechanism of squeezing and a summary
are presented in Sections 5 and 6, respectively.

2 Model and equation

We consider a system of N closed four-level atoms as
shown in Figure 1a. The energy level of the ith atomic
level is ~ωi (i = 1−4). The transitions |1〉−|3〉, |2〉−|3〉
and |3〉−|4〉 are dipole-allowed, and others are dipole-
forbidden. 2γ1 and 2γ2 are the spontaneous decay rates,
2Λ is the incoherent pumping rate. For simplicity, we as-
sume that the spontaneous decay rates from the level |3〉
to |1〉 and |2〉 are equal, and that the incoherent pump-
ing rates from the levels |1〉 and |2〉 to the level |4〉 are
equal. The double cavity resonantly contains the two las-
ing modes at frequencies ν1 and ν2. The two lasing modes
are coupled to the transitions |1〉−|3〉 and |2〉−|3〉 via the
coupling constants g1 and g2, respectively. The dipole
transition |3〉−|4〉 is driven by a classical coherent field
with frequency ν3. This field will affect the atoms only
through the Rabi frequency associated with it; it can thus
be characterized by Ω(t) = Ωexp(−iν3t) where Ω de-
notes the Rabi frequency. The dipole-forbidden transition
|1〉−|2〉 are strongly coupled by an external microwave
of frequency ν and the corresponding Rabi frequency is
Ων(t) = Ωνexp(−iφ) where Ων and φ are the real ampli-
tude and phase.

The Hamiltonian in the interaction picture for this sys-
tem is [3,29]

VI = V1 + V2, (1)

V1 = −
N∑
µ=1

1

2
~Ωνeiφσµ12 +H.c., (2)

V2 =
N∑
µ=1

(i~g1a
†
1σ
µ
13e
−i∆1t

+ i~g2a
†
2σ
µ
23e
−i∆2t + i~Ω∗σµ34e

−i∆3t) +H.c., (3)

where a1, a2 (a†1, a
†
2) are the annihilation (creation) oper-

ators for the two cavity fields, and σµij = (|i〉〈j|)µ, (i 6= j,

i, j = 1−4) are the atomic rasing or lowering operators.
We have introduced the detunings as ∆1 = ω3 − ω1 − ν1,
∆2 = ω3 − ω2 − ν2, ∆3 = ω4 −ω3 − ν3, and assumed that
the microwave field is resonant with the |1〉−|2〉 transition.
Furthermore we assume ∆1 = ∆2 = ∆ and ∆3 = 0.

Following standard techniques [35,36], we introduce
dissipation by coupling the atoms and the two modes to
reservoirs, and derive a master equation for the reduced-
density operator ρ of the atoms and the two field modes.
The resulting master equation in the interaction picture is

dρ

dt
=

1

i~
[VI, ρ] + La1ρ+ La2ρ+ L34ρ

+ L13ρ+ L23ρ+ L14ρ+ L24ρ, (4)

where

Laiρ = k(aiρa
†
i − a

†
iaiρ− ρa

†
iai), i = 1, 2,

L34ρ =
N∑
µ=1

γ1(σµ34ρσ
†µ
34 − σ

†µ
34σ

µ
34ρ− ρσ

†µ
34σ

µ
34),

Li3ρ =
N∑
µ=1

γ2(σµi3ρσ
†µ
i3 − σ

†µ
i3 σ

µ
i3ρ− ρσ

†µ
i3 σ

µ
i3), i = 1, 2,

Li4ρ =
N∑
µ=1

Λ(σ†µi4 ρσ
µ
i4 − σ

µ
i4σ
†µ
i4 ρ− ρσ

µ
i4σ
†µ
i4 ), i = 1, 2.

For simplicity, we have assumed the equal cavity loss rates
k for the two field modes.

We transform into the picture dressed by the mi-
crowave field (i.e., the second interaction picture) [3,29],
where V1 is eliminated from the equation of motion, as

VII = e
i
~V1tV2e

−
i
~V1t. (5)

The following treatment is valid under the detuning condi-
tion which leads to correlated spontaneous emission [29],
i.e., ∆ = Ων/2. Assuming Ων � γ1, γ2 and Λ, we can in-
troduce an effective rotating wave approximation (RWA)
[3,29]. Then we can simplify the Hamiltonian in the sec-
ond interaction picture. We define the sum and relative
field operators for the two lasing modes as

A = (g1a1e
−i
φ
2 + g2a2e

i
φ
2 )/
√

2G,

B = (g2a1e
−i
φ
2 − g1a2e

i
φ
2 )/
√

2G, (6)

in such a way that [A,A†] = [B,B†] = 1, [A,B] =
[A,B†] = 0. One can now express a1 and a2 in terms of A
and B. In equation (6) we have introduced the notation
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G =
√

(g2
1 + g2

2)/2. We also introduce the combination
states for the atom

|A〉 = 1√
2
(ei

φ
2 |1〉+ e−i

φ
2 |2〉),

|B〉 = 1√
2
(ei

φ
2 |1〉 − e−i

φ
2 |2〉).

(7)

In the RWA, the interaction Hamiltonian reads as

VII =
N∑
µ

(i~GA†σµA3 + i~Ω∗pσ
µ
34) +H.c. (8)

It is evident that the interaction Hamiltonian of the sys-
tem is greatly simplified. It should be noted that the mode
A is now resonantly coupled to the active laser media and
the state |B〉 is decoupled from the interaction Hamil-
tonian. According to the simplified Hamiltonian we can
plot the atomic levels and the transitions in Figure 1b.
The driving transition |3〉−|4〉 remains unchanged and the
transition |3〉−|A〉 represents lasing transition. In the sec-
ond interaction picture the master equation (4) reduces to

dρ

dt
=

1

i~
[VII, ρ] + LAρ+ LBρ+ L34ρ

+ LA3ρ+ LB3ρ+ LA4ρ+ LB4ρ, (9)

where L34ρ keeps unchanged. LAρ, LBρ, LA3ρ, LB3ρ,
LA4ρ, and LB4ρ have the same forms as La1ρ, La2ρ, L13ρ,
L23ρ, L14ρ, and L24ρ with the substitutions of A,B, σµA3,
σµB3, σµA4, and σµB4 for a1, a2, σ

µ
13, σµ23, σµ14, and σµ24, re-

spectively.
We realize that there is no gain for the relative mode

B (since the mode B is decoupled from the active atoms
and the other mode A) and that the mode B is coupled
to a loss reservoir (at zero temperature) only. Thus the
relative mode B is always in its vaccum state. The matrix
elements of the density operator for the mode B are

ρ(B)
n,m = δn,mδn,0. (10)

Since the relative mode B is in its vaccum state, the den-
sity operator ρ for the atoms and the mode A and B can
be separated into two independent parts

ρ = ρ(A)ρ(B), (11)

where ρ(A) is the reduced density operator for the atoms
and the mode A. Finally we obtain the master equation
of reduced density operator ρ(A) of the atoms and the
mode A

dρ(A)

dt
=

1

i~
[VII, ρ

(A)] + LAρ
(A) + L34ρ

(A) + LA3ρ
(A)

+ LB3ρ
(A) + LA4ρ

(A) + LB4ρ
(A). (12)

In order to determine the noise properties of the mode
A, we apply a c-number Langevin approach. This opera-
tor master equation is equivalent to a c-number Fokker-
Planck equation for the generalized P representation of

Drummond and Gardiner [37]. We choose the normal or-
dering

A†, σ†µ34 , σ
†µ
A3, σ

†µ
A4, σ

†µ
B4, σ

†µ
B3, σ

†µ
BA, σ

µ
4 , σ

µ
A,

σµB, σ
µ
BA, σ

µ
B3, σ

µ
B4, σ

µ
A4, σ

µ
A3, σ

µ
34, A

where σµi = (|i〉〈i|)µ, (i = A,B, 4) are the atomic pop-
ulation operators. We define a correspondence between c
numbers and operators as

α↔ A, v1 ↔
N∑
µ=1

σµ34, v2 ↔
N∑
µ=1

σµA3,

v3 ↔
N∑
µ=1

σµA4, vBi ↔
N∑
µ=1

σµBi, zi ↔
N∑
µ=1

σµi ,

α† ↔ A†, v†1 ↔
N∑
µ=1

σ†µ34 , v†2 ↔
N∑
µ=1

σ†µA3,

v†3 ↔
N∑
µ=1

σ†µA4, v
†
Bi ↔

N∑
µ=1

σ†µBi.

We also adopt the following standard scaling of the vari-
ables and dipole coupling constant with the number of
atoms as,

α = α̃N
1
2 , zi = z̃iN, vi = ṽiN,

vBi = ṽBiN, G = G̃N−
1
2 ,

where a tilde denotes a scaled quantity. In the following
we will drop the tilde for simplicity, keeping in mind that
the c-numbers α, zi, vi, vBi, and G now denote the scaled
quantities. Terms containing derivatives of higher than
second order are negligible in the limit of many atoms.
Finally we obtain the c-number Langevin equations of the
mode A and atoms,

α̇ = −kα+Gv2 + Fα, (13)

v̇1 = −γ34v1 +Ω(z4 − z3)−Gα†v3 + Fv1 , (14)

v̇2 = −γ13v2 +Gα(z3 − zA) +Ω∗v3 + Fv2 , (15)

v̇3 = −γ14v3 −Ωv2 +Gαv1 + Fv3 , (16)

v̇Bi = −γBivBi + FvBi , i = A, 3, 4, (17)

ż4 = −2γ1z4 + 2Λ(zA + zB)−Ω∗v1 −Ωv
†
1 + Fz4 , (18)

żA = −2ΛzA + 2γ2z3 +Gα†v2 +Gαv†2 + FzA , (19)

żB = −2ΛzB + 2γ2z3 + FzB . (20)

The closeness of the system requires zA + zB + z3 +
z4 = 1. Here we only consider radiative decays. In
equations (14–17) we have introduced γ34 = γ1 + 2γ2,
γ13 = γB3 = Λ+ 2γ2, γ14 = γB4 = γ1 + Λ, γBA = 2Λ.

We see from equation (17) that the polarizations
vBi (i = A, 3, 4) always are zero in the steady state
and have no effect on the steady state laser intensities.
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So among the atomic operators associated with the level
|B〉, only the population operator σB contributes to the
steady state laser intensities. We also see from equa-
tions (13–20) that vBi (i =A, 3, 4) are uncorrelated with
the field operators and other atomic operators. As usual,
we assume the atomic variables can be eliminated adi-
abatically. Under this condition, the noise in vBi is not
coupled into the laser field mode A (also see Eqs. (22, 24,
26)). So, in the following we need not write out the noise
correlations involved in the noise terms FvBi . The other
noise correlations are generally written as

〈Fx(t)Fy(t
′

)〉 = 2〈Dxy〉δ(t − t
′

),

x, y = α†, v†i , zj, vi, α; i = 1− 3, j = A,B, 4. (21)

The nonzero diffusion coefficients 2〈Dxy〉 for the c-number
variances are presented in Appendix A.

3 Calculation of noise

3.1 Mandel Q parameter for field mode A

After eliminating the atomic variables under the adiabatic
elimination assumption, we obtain the Langevin equation
for the photon number I = α†α of the mode A as

İ = dI + FI . (22)

The drift coefficient dI and the Langevin force FI are,

dI = (GA3 − 2k)I, (23)

FI = α†F + αF †, (24)

where GA3 is the nonlinear gain, F is the Langevin force
for the amplitude α,

GA3 =
B1I2 + C1

AI2
2 +B2I2 + C2

, (25)

F = Fα + u11Fv1 + u12Fv2 + u13Fv3 + u21Fv†1
+ u22Fv†2

+ u23Fv†3
+ u34Fz4 + u3AFzA + u3BFzB . (26)

In equations (25, 26) we have defined the laser intensity as
I2 = G2I. The parameters A, Bi, Ci and uij are presented
in the Appendix B. The correlation for the intensity noise
is written as

〈FI(t)FI(t
′

)〉 = 2〈DII〉δ(t− t
′

). (27)

The expression for the diffusion coefficients 2〈DII〉 is also
presented in Appendix B.

Neglecting the noise FI and setting the derivatives to
zero in equation (22), we can obtain the laser intensity
I2 in the steady state. The steady state laser intensity I2
above the lasing threshold is obtained as

I2 = G2I =
−B +

√
B2 − 4AC

2A
, (28)

where

B = B2 −
B1

2k
, C = C2 −

C1

2k
·

The threshold condition is C < 0, i.e., C1/C2 > 2k. If the
system operates well above threshold, we have C1/C2 �
2k.

The steady state atomic polarizations vi and popula-
tions zi, which are expressed in terms of the above laser
intensity, are given in Appendix C.

The Mandel Q parameter in the steady state is ob-
tained as,

Q =
〈(∆I)2〉 − I

I
=
〈DII〉

λI
, (29)

where λ = |∂dI(I)/∂I| is the intensity fluctuation width.
Q is a well-known measure of the deviation of the photon
statistics from a Poissonian distribution (Q = 0) which
one finds for a coherent state. A negative Q (equivalent to
sub-Poissonian statistics) is a signature of a nonclassical
state of the field. The optimum Q parameter depends on
λ. For λ ≥ 2k, one has [23]Q ≥ −1/2; for λ ≥ 4k, however,
one has [24,25] Q ≥ −1.

The extracavity fluctuation spectrum S(ω) is related
to the Q parameter through the following relation,

S(ω) = 1 + 2Q

(
2k

λ

)
λ2

λ2 + ω2
, (30)

where 1 is the shot noise. S(ω) = 1 corresponds to Pois-
sonian statistics, S(ω) = 0 to perfect squeezing, and
0 < S(ω) < 1 to sub-Poissonian statistics. The output
spectrum also depends on intensity fluctuation width λ.
For Q = −1/2, when λ = 2k one has [23] S(ω) = 0, which
corresponds to perfect squeezing, but when λ = 4k, one
has [19] S(ω) = 1/2, which corresponds to 50% squeezing.

3.2 Two-mode variance

In order to calculate the degree of two-mode squeezing, we
first introduce Hermitian operators relating to the aver-
age amplitude BR, the relative amplitude Br, the average
phase BΘ, the relative phase Bθ, respectively ,

BR,r =
1
√

8
[(a1e

−iφ/2 + a†1e
iφ/2)± (a2e

iφ/2 + a†2e
−iφ/2)],

BΘ,θ =
−i
√

8
[(a1e

−iφ/2 − a†1e
iφ/2)± (a2e

iφ/2 − a†2e
−iφ/2)].

(31)

In what follows, we assume g1 = g2 = g and then have
G = g. The modes A and B are written as

A =
1
√

2
(a1e

−i
φ
2 + a2e

i
φ
2 ),

B =
1
√

2
(a1e

−i
φ
2 − a2e

i
φ
2 ).

(32)
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Expressing the a1 and a2 in terms of A and B, we have

BR = Re(A/2),

Br = Re(B/2),

BΘ = Im(A/2),

Bθ = Im(B/2). (33)

The vaccum noise levels of all above operators are 1/4.
It is seen from equation (33) that the average ampli-

tude operator BR is identical to the amplitude operator
X = (A+A†)/2 of the mode A. Therefore, the noise of the
operator BR equals the amplitude noise in the mode A,
i.e., 〈(∆BR)2〉 = 〈(∆X)2〉. When the steady state photon
number I is far larger than unity (usually it is the case),
the photon number variance of the mode A is related to
〈(∆X)2〉 by the following relation [38]

〈(∆I)2〉 = 4I〈(∆X)2〉. (34)

It is easy to see from equation (29) that 〈(∆X)2〉 is cor-
related to the Q parameter through the following relation

〈(∆X)2〉 =
1

4
(1 +Q). (35)

If Q = 0, we have 〈(∆X)2〉 = 1/4, which corresponds to
a two-mode coherent state with Poissonian statistics. If
Q < 0, then 〈(∆X)2〉 < 1/4, which indicates occurrence
of squeezing.

4 Results

4.1 Squeezing and lasing without inversion
in the average mode

Here we first present the properties of the sum mode A.
As the first step, let us consider the case where the lower
lasing level is depleted and the coherent pumping to the
upper level is strong, i.e., Λ, Ω � γ1, γ2. When the system
operates well above threshold (i.e., C1/C2 � 2k), the laser
intensity is obtained as

I2 =

√
2G2ΛI1

k
(36)

where I1 = Ω∗Ω is the intensity of the coherent driving
field. For the usual good cavity case (i.e., γ1, γ2 � k),
one may have a large laser intensity, I2 � I1, Λ2. At
the moment, we obtain the population difference on the
transitions |3〉−|A〉 as

z3 − zA = −
I1

I2
· (37)

It is seen that, in the microwave dressed picture, the mode
A operates under noninversion. Then we can obtain the
simple expressions for the intensity fluctuation width λ
and the Mandel Q parameter as

λ = 4k +O

(
I2
1

I2
2

)
, (38)

Q = −
1

2
+O

(
I2
1

I2
2

)
. (39)

We see that the intensity fluctuation width λ = 4k is twice
much as the cavity loss rate 2k and the Q parameter is
limited to Q = −1/2. That means that the intracavity
field mode A exhibits maximal squeezing of 50%. It is
seen from equation (30) that, λ = 4k limits the output
noise spectrum to 1 + Q. The optimum value Q = −1/2
corresponds to 50% extracavity squeezing.

As the next step, we consider general cases via the nu-
merical analysis. In Figures 2a and 2b we plot population
difference z3− zA, and Mandel Q parameter, respectively,
versus the incoherent pumping rateΛ. It is easy to see that
the mode A may not only operate without inversion for
a large range of the parameters (as shown in (1) and (2)
of Fig. 2a), but also exhibit transitions between inversion
and noninversion (as shown in (3) and (4) of Fig. 2a). On
the other hand, even though the system transits between
noninversion and inversion, the laser intensity continues
increasing (see the insert in Fig. 2b) and at the same time
the Mandel Q parameter remains decreasing as the inco-
herent pumping rate Λ increases. Furthermore, when the
incoherent pumping rate Λ is larger and thus the system
operates well above threshold, the Mandel Q parameter
approaches the optimum value Q = −1/2 (as shown in
Fig. 2b). We can say that a laser with inversion produces
squeezed light as effectively as a laser without inversion
does.

In contrast to the passive schemes where good squeez-
ing occurs only for weak fields [26,27], the present four-
level system can produce bright squeezed laser light.
Whether the system operates without or with inversion,
the optimum Mandel Q parameter of Q = −1/2 can be
achieved. This is one of the most important features of the
four-level scheme.

4.2 Quenching of relative mode noise

Since the relative mode B is in its vaccum state, the noises
in the relative amplitude and the relative phase drop to
their vaccum noise levels,

〈(∆Br,θ)
2〉 =

1

4
· (40)

That means the quenching of the spontaneous emission
fluctuations in the relative amplitude and in the relative
phase [28]. So, another feature of the four-level system
is that, when 50% squeezing in the average amplitude is
achieved, spontaneous emission fluctuations in the relative
amplitude and in the relative phase are quenched.

4.3 Properties of each CEL mode a1 and a2

Furthermore, we show the statistical properties of each of
the two modes a1 and a2. Since the mode B is in its vac-
cum state, according to the operator relations for the two
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(a) (b)

Fig. 2. (a) The population differences z3 − zA (solid line) and z3 − z1(= z3 − z2) (dashed line) versus the incoherent pumping
rate Λ. (1) corresponds to the parameters: G = 1.0, k = 0.002, γ1 = 0.1, γ2 = 0.2, I1 = 4.0; (2) corresponds to the parameters:
G = 1.0, k = 0.01, γ1 = γ2 = 0.1, I1 = 7.84; (3) corresponds to the parameters: G = 1.0, k = 0.002, γ1 = γ2 = 0.1, I1 = 9.0; (4)
corresponds to the parameters: G = 1.0, k = 0.01, γ1 = γ2 = 0.1, I1 = 4.0. (b) The Mandel Q parameter versus the incoherent
pumping rate Λ. Solid, dashed, dotted, dotted-dashed lines correspond to the same parameters as in (1), (2), (3), (4) of (a),
respectively. The insert shows the laser intensity I2 versus the incoherent pumping rate Λ for the same parameters.

field modes (Eqs. (32)) we have the steady state photon
numbers Ni (i = 1, 2) of each of the two modes

N1 = N2 =
1

2
I. (41)

Using the operator relations for the atomic combination
states (Eqs. (7)), we easily obtain the population differ-
ences

z3 − z1 = z3 − z2 = z3 −
1

2
(zA + zB). (42)

The Mandel Q parameters for the two modes are [34]

Q1 = Q2 =
1

2
Q. (43)

It is seen from equations (41–43) that the two CEL modes
have the same properties. When Λ, Ω � γ1, γ2 and I2 �
Λ2, I1, we easily find

z3 − z1 = z3 − z2 = −
I1

I2
· (44)

The system exhibits two-mode lasing without inversion in
the bare atomic state. At the same time, the optimum
Mandel Q parameter is Q1 = Q2 = −1/4. Therefore, we
see that, when the system operates well above threshold,

not only the mode A but also the two CEL modes operate
without inversion and exhibit squeezing simultaneously.

For the general cases, we also plot in Figure 2a pop-
ulation difference z3 − z1 versus the incoherent pumping
rate Λ. On one hand, the two CEL modes and the mode
A can exhibit simultaneously lasing without inversion for
a large range of parameters (as shown in (1–3) of Fig. 2a).
On the other hand, we can see that the two CEL modes
have a lot of different characteristics from the mode A. For
example, the two CEL modes exhibit lasing with inversion
when the mode A operates under noninversion (as shown
in (4) of Fig. 2b). Especially, the two CEL modes exhibit
transitions three times between inversion and noninver-
sion while the mode A operates under noninversion (as
shown in (2) of Fig. 2b). However, as the pumping rate Λ
increases, the Q parameter tends to decreases. When the
system operates well above threshold, the Mandel Q pa-
rameter approaches the optimum value Q1 = Q2 = −1/4
regardless of the transition between inversion and nonin-
version.

5 Discussion

Let us first compare the present scheme with the Λ
schemes proposed by Gheri and Walls [19], Ritsch, Marte,
and Zoller [21]. In their schemes, the auxiliary level is
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chosen such that no spontaneous emission from this level
happens. The population in the upper lasing level is much
smaller than the population in the lower lasing level. Thus
one could expect that the spontaneous emission into the
lasing mode is rather small compared to the standard
laser. In the four-level system, however, the auxiliary level
undergoes spontaneous emission. For convenience, we con-
sider the mode A. Under the above conditions for the an-
alytic solutions (Λ, Ω � γ1, γ2), we have z4 ≈ 1. For
the parameters for the above numerical solutions, we also
have z4 � zi (i = A,B, 1, 2, 3) when Λ is large; and at
the same time, the population in the upper lasing level
may be larger than the population in each of the lower
lasing level (as shown in (3–4) in Fig. 2a). In spite of the
above differences, the four-level system can produce the
same squeezing as the Λ schemes do. It is evident that the
squeezing does not depend on whether the system oper-
ates with inversion or without inversion.

In order to understand the physical picture of the two-
mode squeezing, we consider the case where the lower las-
ing level is depleted and the coherent pumping to the up-
per level is strong, i.e., Λ, Ω � γ1, γ2. When the system
operates well above threshold (i.e., C1/C2 � 2k), the laser
intensity is large, I2 � Λ2, I1. Under these conditions we
have zB

.
= 0. Thus the present system (Fig. 1b) is reduced

to a three-level system only with levels |A〉, |3〉 and |4〉.
The transition |A〉−|3〉 is the lasing transition. The pump-
ing process is a succession of the incoherent pump from
level |A〉 to |4〉 and the coherent pump on the transition
|3〉−|4〉. Such a succession of pumping processes recycles
the active laser electron from the lower level |A〉 to the
upper level |3〉 through level |4〉. It was shown [23] that
the sequence of two incoherent steps leads to Q = −1/4.
It is easy to understand that an incoherent step plus a
coherent pump is more effective in noise reduction than
the two incoherent steps. The succession of one incoher-
ent step and a coherent driving leads to Q = −1/2. The
large population in the auxiliary level |4〉 plays an impor-
tant role in squeezing. As well-known, the coherent driving
is always two-directional. However, when the population
in level |4〉 is much larger than the population in level
|3〉, the pump from level |4〉 to level |3〉 prevails over the
pump from level |3〉 to level |4〉. As a result, the pump from
level |A〉 to level |3〉 through |4〉 mainly is unidirectional.
The unidirectional pump leads to regular recycling of the
laser electron. Therefore, the physical picture of the noise
suppression is that the succession of the incoherent and
coherent processes leads to a regular recycling of the laser
electron. In addition, the effects of the level |B〉 coun-
teracts the squeezing because the recycling through the
level |B〉 deviates the above recycling and so reduces the
regularity of the laser electron. However, its influence is
negligible so long as the Rabi frequency of the laser field
is far larger than the decay rates,

Ideally, since the intensity fluctuation width λ = 4k is
twice large as the cavity loss rate 2k, the Q parameter have
an optimum value of −1. However, we only get Q = −1/2.
This is because the mode A is resonant with the transition
|A〉−|3〉. We might more easily understand this result in

the picture dressed by the mode A. It should be noted that
the mode A acts as a single mode. The strong laser field
mode A leads to an ac-Stark splitting of the lasing tran-
sition, which is proportional to the Rabi frequency Gα.
Due to the effects of the level shifts the coherent driving
is detuned from the atomic dressed-state transition fre-
quencies between states |4〉 and |3〉. For such a case, the
cycling of the active laser electron is regularized moder-
ately. On the basis of the above calculations and analyses,
we can deduce that the depletion of the ground states and
the strong coherent driving are the optimum conditions
for squeezing. So we only have Q = −1/2. A possible ex-
ample of a real atom for realization of the scheme could be
found in neutral sodium. We identify the two components
F = 1 and F = 2 of 3S1/2 as the ground level doublet |1〉
and |2〉, 3P1/2 as |3〉, and 4S1/2 as |4〉. Although there is
an extra spontaneous emission channel from the level |4〉
through |3〉 to |1〉 and |2〉, its influence is negligible so long
as the Rabi frequency of the driving field is far larger than
the decay rates, just as the influence of the dressed-state
level |B〉 is.

6 Conclusion

In summary, we have investigated the statistical prop-
erties of a four-level two-mode laser system. The main
points are summarized as follows. The four-level system
can produce squeezed two-mode laser without and with
population inversion. Good squeezing is compatible with
large laser intensity. When the two-mode laser is operated
well above threshold, an optimum Mandel Q parameter
of Q = −1/2 is obtained. At the same time, the relative
amplitude and the relative phase exhibit the quenching of
spontaneous emission fluctuations. Whether the system
operates under inversion, or noninversion, or transition
between inversion and noninversion, the optimum Man-
del Q parameter of Q = −1/2 may be retained when the
system operates well above threshold. Each CEL mode ex-
hibits squeezing with the optimum Mandel Q parameter
of Q = −1/4. Although the operation properties of the
two CEL modes are similar to those of the sum mode A,
there are a lot of differences between them. Especially, an
interesting phenomenon is that, as the incoherent pump-
ing rate increases, the two CEL modes transit three times
between inversion and noninversion while the sum mode A
operates under noninversion. Furthermore, a simple phys-
ical picture of squeezing mechanism is given. This mecha-
nism is that the succession of incoherent pumping and the
coherent driving leads to the regular recycling of the laser
electron. Such an mechanism does not depend on whether
the system operates with or without inversion. Therefore,
the optimum squeezing is achieved both for inversion laser
and for noninversion laser.

This work was supported by the National Natural Science
Foundation of China and the Natural Science Foundation of
Hubei Province.
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Appendix A

The nonzero diffusion coefficients for the c-number vari-
ances are

2〈Dv1v1〉 = 2Ωv1,

2〈Dv2v2〉 = 2Gαv2,

2〈Dv†1v1
〉 = 4γ2z4 + 2Λ(zA + zB),

2〈D
v†2v2
〉 = 2Λz3 + 2γ1z4,

2〈D
v
†
3v3
〉 = 2Λ(z4 + zA + zB),

2〈Dv2v1〉 = −Ωv2 + 4γ2v1,

2〈Dv3v1〉 = Ωv3,

2〈Dv†2v3
〉 = 2Λv1,

2〈Dz4v2〉 = −2Λv2 +Ω∗v3,

2〈Dz4v3〉 = −2Λv3,

2〈DzAv1〉 = −2γ2v1,

2〈DzAv2〉 = 2Λv2,

2〈DzAv3〉 = 2Λv3,

2〈DzBv1〉 = −2γ2v1,

2〈Dz4z4〉 = −Ωv†1 −Ω
∗v1 + 2γ1z4 + 2Λ(zA + zB),

2〈DzAzA〉 = −Gαv†2 −Gα
†v2 + 2(ΛzA + γ2z3),

2〈DzBzB 〉 = 2ΛzB + 2γ2z3,

2〈Dz4zA〉 = −2ΛzA,

2〈Dz4zB 〉 = −2ΛzB,

2〈Dv1α〉 = −Gv3.

Appendix B

Here we list the parameters which appear in equation (25)

A = (T + 1)γ1 + γ2 +Λ,

B1 = 2G2γ1(Λ− γ2),

C1 = 2G2{[Λ(2γ2 − γ1) + (Λ− γ2)γ14]I1

+ γ1(Λ− γ2)γ14γ34},

B2 = [2γ2 − γ1 + (T + 2)(γ14 − Λ)]I1

+[γ1(TΛ+γ2) + 2Λγ2]γ13+[Λ+(T+1)γ1+γ2]γ14γ34,

C2 = [(T + 1)Λ+ γ2]I2
1 + {[γ1(γ2 + TΛ) + 2Λγ2)γ34

+[(T+1)Λ+γ2]γ14γ13}I1+[γ1(γ2+TΛ)+2Λγ2]γ34γ13γ14.

In the above expressions we have defined T = 1 + γ2/Λ
and the intensity of the driving field I1 = Ω∗Ω.

Then we present the parameters in equation (26)

u11 = G2αΩ∗[U1(γ14γ13 + I1)− U2I2 + 2]/2U

u12 = G[U1I1I2 + (2− U2I2)(γ14γ34 + I2)]/2U

u13 = GΩ∗[−(U1γ13 + U2γ34)I2 + 2γ34]/2U

u21 = G2αΩ[U1(γ14γ13 + I1)− U2I2)]/2U

u22 = G3α2[U1I1 − U2(γ14γ34 + I2)]/2U

u23 = G3α2Ω(−U1γ13 − U2γ34)/2U

u34 = −G2αU1/2

u3A = −G2αU2/2

u3B = −G2α(
GA3

G2Λ
+ U1)/2

with

U = γ34γ13γ14 + γ34I1 + γ13I2

U1 = [−(γ2 + TΛ+ Λ)I1 + (Λ− γ2)I2

+ (Λ− γ2)γ14γ34]/D

U2 = {[(T + 2)γ14 + γ2 − γ1 − (T + 1)Λ]I1

+ [(T + 1)γ1 + γ2 + Λ](I2 + γ14γ34)}/D.

Without loss of generality, in the steady state one can
takes Ω, vi, (i = 1−3) and α to be real. Thus the diffusion
coefficient 〈DII〉 can be written as

〈DII〉 = 2
3∑
i=1

(u1i + u2i)
2(〈Dvivi〉+ 〈Dv∗i vi

〉)

+ 4
3∑

i,j=1,i6=j

(u1i + u2i)(u1j + u2j)(〈Dvivj 〉+ 〈Dv∗i vj
〉)

+ 8
∑

i=A,B,4

3∑
j=1

u3i(u1j + u2j)〈Dzivj 〉+ 4
∑

i=A,B,4

u2
3i〈Dzizi〉

+ 8
∑

i,j=A,B,4,i6=j

u3iu3j〈Dzizj
〉+ 4(u21 + u11)〈Dv1α〉.

Appendix C

The atomic polarizations and the atomic populations in
the steady state are

v1 = Ω
{
Λ(2γ2 − γ1)I1 + [γ1(Λ− γ2)

+ (γ2 + Λ− γ1)γ14]I2 + Λ(2γ2 − γ1)γ14γ13

}
/D

v2 = Gα
{

[Λ(2γ2 − γ1) + γ14(Λ− γ2)]I1

+ γ1(Λ− γ2)I2 + γ1(Λ− γ2)γ14γ34

}
/D
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v3 = ΩGα
[
(γ2 − Λ)I1 + (γ2 + Λ− γ1)I2

+ Λ(2γ2 − γ1)γ13 + γ1(γ2 − Λ)γ34

]
/D

zA =
{
γ2I

2
1 + γ1I

2
2 + (−γ1 + γ2 + γ14)I1I2

+ γ2(γ14γ13 + γ1γ34)I1 + γ1(γ14γ34 + γ2γ13)I2

+ γ1γ2γ34γ13γ14

}
/D

zB = (T − 1)z3

z3 =
{
ΛI2

1 +γ1I
2
2 +(−Λ+γ14)I1I2+Λ(γ14γ13+γ1γ34)I1

+ γ1(γ14γ34 + Λγ13)I2 + Λγ1γ34γ13γ14

}
/D

z4 =
{
ΛI2

1 + (γ2 + Λ)I2
2 + (−2Λ+ γ2 + γ14)I1I2

+ Λ(γ14γ13+2γ2γ34)I1+[(γ2+Λ)γ14γ34+2Λγ2γ13]I2

+ 2Λγ2γ34γ13γ14

}
/D

where
D = AI2

2 +B2I2 + C2.
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